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ABSTRACT

Weighted least squares, and related stochastic approximation

algorithms are studied for parameter estimation, adaptive state

estimation, adaptive N-step-ahead prediction, and adaptive control,

in both white and coloured noise environments. For the fundamental

algorithm which is the basis for the various applications, the step

size in the stochastic approximation versions and the weighting

coefficient in the weighted least squares schemes are selected

according to a readily calculated

stability measure associated with the estimator.Tle selection is

guided by the convergence theory. In this way, strong global

convergence of the parameter estimates, state estimates, prediction

or tracking errors is not only guaranteed under the appropriate

noise, passivity, and stability or minimum phase conditions, but

also the convergence is as fast as it appears reasonable to achieve
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1. INTRODUCTION

- Based on the very simple ideas of least squares parameter

estimation and stochastic approximation it is not difficult to

propose adaptive estimators, predictors and controllers which work

quite well in a range of environments. However, existing schemes

sometimes behave poorly in the absence of persistency of excitation

of the state estimates. In the presence of instabilities, or

what appears to be instability over a short time period, this lack

of'persistencd'may cause divergence of parameter estimates. To pin

down the precise conditions under which such schemes work well is

of considerable interest. For adaptive control, the task is made

difficult since it is unreasonable to add any a priori assumptions

concerning the closed-loop system stability.

A key jbjective of this paper is to demonstrate for linear

stochastic signal models that Lt is possible for the theory to guide

in the design of the adaptive algorithms so as to ensure parameter

and/or prediction error convergence with the convergence rate being

as fast as appears reasonable to achieve with simple adaptive schemes.

In earlier work [1, 2], the convergence of least squares and

extended least squares stochastic adaptive schemes are studied using

a martingale convergence theory. A sufficient condition of crucial

importance, exposed in this theory, is that a system related to the

signal generating system or frequently just the noise generating system

be passive (or have a positive real transfer function in the time

invariant linear signal model case). Simulation studies and the

theory of [3, 4] also suggest that this condition is close to being

a necessary one. Also fundamental Lo the parameter convergence

theory of (1, 21 is a persistence of excitation condition. The
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theory does not exclude the possibility of instabilities arising in

closed-loop control which cause lack of persistence of excitation in

some modes, and thus divergence of parameter estimates, compounded by

ill-conditioned calculations. Least squares results have also been

reported in [3], and in [4] via an ordinary differential equation approach

[5]. The work of [1-5], without modification falls short of giving

a global convergence analysis for adaptive control.

More recently in [6], a specific adaptive control scheme has

been proposed for which global strong convergence results are derived

without any a priori stability assumptions. The theory builds on

the martingale approach, and on the earlier deterministic theory of

[7-10]. However, our simulation experience shows that the perform-

ance is inferior (e.g. 100 times slower) to that of the self-tuning

schemes of (11-14] when these converge. These self-tuning control

sp'emes use least squares ideas but in common with the schiemes of [1, 2],

their convergence theory requires a priori assumptions about their

stability. This is not fully satisfactory in a control situation.

An attempt to generalize the stochastic approximation approach

of [6] by harnessing the power of a least squares approach is given

in [15]. In this work, a stability measure is taken to be

a bound on the condition number of this estimation

error "covariance" matrix employed in the least squares approach.

When a somewhat arbitrary bound on this number is exceeded, then the

algorithm uses a stochastic approximation scheme tailored to the

error "coveriance" matrix at the switching time. The scheme uses

a priori prediction error estimates in the state estimator and is dramat-

ically inferior to the schemes of [6] for some coloured noise applications.

A revised version of (15] translates ideas from the technical report 1161,
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the antecedant of the present paper, to treat the case of a posteriori

prediction errors in the state estimator. In one scheme it employs I
the stability measure of [16].

In this paper, we tolerate a reduc.ed weighting in the extended least

squares performance index when there is what appears to be insufficient

excitation assessed over a finite time period. This reduced weighting

ovLrrides any other weightiag scheme such as "exponential weighting"

applied for the initial transient period. As a consequence, global

convergence results are achieved for an algorithm near in some sense

to the standard extended least squares scheme. The convergence results

here are stronger than in the revised version of [15], giving convergence

rates and also than in the technical report (16] on which this paper

is based.

The specific contributions of the paper are summarized as follows.

The first contribution is to give a global convergence theory for

weighted least squares schemes and related stochastic approximation

schemes. The important by-product of this contribution is to give E

simple scheme for weighting coefficient selection to ensure global

convergence in closed-loop adaptive control. At the heart of the

weighting coefficient selction schemes is a persistance of excitation/

stability measure already available in the calculations. The second

contrLbution is to show how earlier global convergence theory re.ults

of [6. 15, 161 can be strengthened to give convergence of the pre-

diction errors, to the appropriate white noise term. In contrast to

earlier work, convergence ,ates are implicit in the present theory,

as are convergence rates for parameter estimate differences. Another

distinctive feature of the theory of the present paper is an implicit

lower bound on the convergence rate of the prediction or tracking
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error to the white noise term even in the absence of persistency of

excitation. A third contribution is to show that under persistently

exciting conditions, zero bias parameter convergence is established.

A final contribution is to show how the theory can be generalized

for N-step-ahead prediction/control schemes without using an inter-

leaved bank of parameter estimators as in [17].

In Section 2, the weighted extended least squares algorithm

is introduced and in Section 3, its global convergence properties

are studied. In Section 4, the case of N-step-ahead prediction/

control is considered and in Section 5, some concluding remarks are

made.
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2. SIGNAL MODELS, ADAPTIVE ALGORITHMS AND CONVERGENCE CONDITIONS

* Signal Model Class. Consider the signal model

Zk = OXk + Vk (2.1)

where zk is the measurement p-vector sequence, and xk  is the state

n-vector, and 0 is the unknown n x p parameter matrix. The noise

Vk is a zero mean white process or more precisely is assumed to
Ik

satisfy for some a
V

[VkIF k_1 ]  V , E I l2F - ] -  (2.2a)

1k

lim sup II vi 112 < w (2.2b)
k4+- 0

where Fk denotes the minimal a-algebra generated by V0, V1, ...", V

x0, x1, 464P Xk, z0, zI, ... , Zk and 0.

If the states xk of such a model are known, then parameter

estimation can be achieved in terms of xk . Otherwise, a standard
A

approach is to replace xk by an estimate xk . For this we need a

more specific description of a model for xk . Consider the state

model

Xk+1 = (F+G1O")xk + G2Vk + f(uk, zk) (2,3)

where F, GI, G2, f(,, .) are known, possibly time-varying functions.

This model (2.1)-(2.3) encompasses a number of useful special

cases. For example, it covers the autoregressive moving average model

class with exogenous inputs (ARMAX) of the form, given here for the

scalar measurement case as

n m r
Zk aizk-i + biUki + c ci Vki + Vk (2.4)

i=l i=l i=l
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with exogenous inputs uk. Details in [2] are not repeated here save that we

can define

xk [Zk- " Zk-n Uk-i "' U k-1  k-r]

,= a ... a bj ... b c, ... Cr]
n M r

It is also true that (2.3) encompasses multivariable ARMAX models

- (with unit delay) in which the various scalar parameters and scalar

variables are replaced by matrices and vectors respectively. That

such models can be used to represent a very general class of linear

systems with unit delay is shown in [18]. We are not here constrained

to a unique representation, or a minimal representation of a multivariable

system, although such models are of course preferable for some applications.

Another example of the class of model encompassed by (2.1)-(2.3) is

the transfer function model class where for polynomials A, B, C, D, in

the delay operator z k u BA -uk + CD Vk. Details are omitted

here.

The model (2.1)-(2.3) also has application to adapttve Kalman

filtering where a co-ordinate basis is specified, as disc7ugsvd in [2].

State Estimation. With the state space model (2.1)-(2.3),given

some estimate ,k at time k, a state estimator is

A A A

Xk+l = Fxk + Gly k + G2 k/k + fk(uk, Zk) (2.5a)

- A Ak AZk/k zk -Yk' Yk = k (2.5b)

For the scalar ARMAX model (2.4),

xk  [ [Zk-I ... Zk-n uk-l ... Uki Zk-l/k-l Zk-r/k- r ]

State Estimation Error Equations. From (2.3)-(2.5) we have
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: k 1 = (F+GG)i% + G(jkX) (2.6)
A

where G G1 -G 2  and = Observe that f(-, *) does not

influence (2.6).

Parameter Estimation. The global convergence theory of the

next section requires that parameter estimates are given from

^ ^ ^~ ^ l A A , - ~
k A A A . +k-kix k )  'k/k 1  (2.7a)

A..

Zk/k 1  zk l- k Ik (2.7b)

where B > 0 satisfies
k

A-i ^-. A-i A A

B 3 (2.8)k-i k <  -i + YkXkXk

For weighted least squares versions, then for some Bo >> 0, Yk > 0

A ^A1 AAA -1

BI. = B k-i BklxkxkBk-l(yk +XkBkiXk)
(2.9)

A . . + A A . A 1 A A . . . ..

Yk k X k = (-k1 +k BklXk) Bk-lxk, Bkl xk = (i-Ykxk'Bkxk) BkXk
A

(Recall that for standard least squares, Yk is a constant Y and
^^ k A -1

YBk = (X xlx) which is independent of Y.) For stochastic
0 A A k^

approximation, Bk = BkI = B > 0. Typically B = I and Y = (Yx'x
kk(kxx)k

0
AThe actual Yk selection is specified later in this section.

A

Parameter Estimation Error. Defining 0k 0 k9 then from

(2.7), (2.5b), (2.9), simple manipulations yield

k/k-i =  klkk Zk/k kk+k(2.a)

A A A A A

A1y 'B' (2.10b)Zk/k- = kkk-lXk)'k/k = (l-YkxkBkxk) 'k/k
A A

Bk~ (2. 1i)
= 0 k-1 -1k +^-A A Zk/k_1 = k B-  XkZk/k

Sk k-i Xk



Minimum Variance Control. We consider the case when the plant

output zk is to be controlled to track a specified trajectory zk .

In minimum variance control, by choosing the control so that the one-

step-ahtad prediction estimate Zk+l/k is the specified trajectory

Zk+l, then the tracking error is the one-step-ahead prediction

error, which is of course "minimized" in a least squares sense by

the state and parameter estimation procedures. Thus the control uk

is selected so that the implicit equations

OkXk+l(Uk) = Zk+1 (2.12)

are satisfied.

An explicit solution for uk is readily found and is oftenk^

unique. For example, for the ARMAX model (2.4), if bI # 0, at some

time k then uk is unique and simply calculated. If bI  0 as when

there is a known delay N > 1 in the plant, then N step-ahead

prediction may be called for. This is studied in Section 4.

Passivit Condition. It is known [2], that the parameter

estimation error equations and state estimation error equations

can be organized as a feedforward subsystem with states xk and a

feedback subsystem with states 0k' and an external noise input vk'

Moreover, the feedback system, in the appropriate organization, turns

out to be passive, as defined in [20]. Since, it is known that a

strictly passive system back to back with a passive system has input/

output stability behaviour for its subsystems [20], it is not surprising

that in the convergence theory of the next section, one of a set

of sufficient conditions is that the feedforward subsystem be strictly

passive. The relevant feedforward subsystem is

A -

k+l = (F + Pk + qk? qk =  Xk (2.13)

*The details are included in remark 4, following the proof of Theorem 3.1.
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and we require that this be tnput strictly passive, and output strictly passive,

or equivalently for some K 0 0, c > 0, and all m

m mqk(pk-eq k) -K, P p *(qk - Pk) -K (2.14)

00

For the time invariant case, an equivalent condition is that
-1{(I+'[zI-(F4G6') G]-

{[I-O'*(zI-F) -] - 41) is strictly positive real [21] (2.15)

and for the ARMAX specialization,* (see Appendix for proof)

[C-1(z) -4] is strictly positive real [21] (2.16)

where C(z) 1 + Clzl + ..Crzwhere

The conditions (2.14) have the interpretation of a

passivity condition for a system with input qk and output (Pk - qkd '

and for a system with input pk and output (qk- ep ) respectively. The

theorem of [20, page 178] tells us that passive systems followed by a mono-

tonically decreasing gain are also passive. So that here with Y > 0 mono-

tonically decreasing,a consequence of the above passivity condition (2.14)

is that for some K > 0, c > 0 *and all m.

m m
(P- k -K, p - K (2.17)

0 0

A discrete-time version of this derivation is in the Appendix.

*For the scheme of [6], the condition is [C-(z)- ] is strictly positive
real where O<a5l is a scale factor on the parameter update step size.

There does not appear to be a corresponding simplification here.
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Bounds. For open-loop, one-step-ahead prediction error convergence to

the noise Vk, it is not surprising that a bound on the plant output

and states is required. Such a priori restrictions are intolerable for

closed-loop adaptive control but they have their parallel in order to

keep the control signals bounded. The parallel conditions are the same

as for the case when the plant parameters are known, namely that the

desired trajectory z k  be bounded and that the plant be minimum phase,

or more precisely, that the plant have a bounded-state, bounded-input,

and a bounded-output, bounded-state property. Equivalently, the plant

inverse system must have a bounded-input, bounded-state and a bounded-

state, bounded-output property, which is guaranteed if it is exponentially

asymptotically stable and is uniformly completely observable and

reachable (see discrete-time versions of results in [221). Thus we

introduce

Open-loop Prediction-Bounds. For some K and all m > m, for

some m
1

m 1I1 Xklla :5 K2I8

Closed-loop Adaptive Control-Bounds. For some r, and all

m > m1  for some m,

m I~z k1 (2.19)
0

-- 12 1 11

Uk lu 1 m 12 xk < 11 zk2 + K (2.20)
O 0 i 0  k

This latter condition is referred to as a "minimum phase" condition.

For the ARMAX model and noise restriction (2.2), then (2.20) holds

trivially for the case of adaptive control with B(z) = bI z-1

+ b &2 + ... bmz minimum phase, or equivalently with all zeros

within the disc IzI < 1. In contrast, (2.18) holds if A(z)

= a + ... a z is minimum phase and uk is bounded in L2.
1 n k 2

Other cases are not spelled out in detail.



Weighting Coefficient Seltction. For the one step ahead

prediction algorithm, we make the following selection of Yk with

R, A ̂^ A

Ea iB- x and > 0 some small number,k kk-l k

1 if kEV A {k: k <  (2.21a)
1 k - k

ifa k0 (k: Q < K, kfSk) (2,21b)

==

CYk if kE-Y k Yk , Y,) (2.21c)k ~ 31

K>O 0 <C, K < 00 k x 2 P max (k,rk) (2.21d)

A A A -

Y min{Yk )kl1  Yk rk6 ' k (2.21e)

For the adaptive control algorithm the above selection is

used except that (2.21e) is replaced by the following.

A -f- A

Yk min { k -  Y)k-I Yk Yk6 k ,6k = 1 (2.21e')

A

The selection of Yk is made so as to satisfy certain summability

conditions for the application of mastingale convergence theorem and

thereby derive the result that tr {Ok Bk0 k c
00 2

SY kll.k/iVkll < - a.s. The monotone nature of Y has already been

alluded to in the discussion of passivity condition, essentially it

keeps the passivity condition same as for the standard least qquare

algorithm. Additionally. chis se4ection satisfies the condition

lim inf Yk(1/2+C) > K > 0. This condition ensures that under a
k-> kk 2

minimum phase restriction on the plant, closed loop system stability

is achieved for the minimum variance controller. These properties of

Yk are summarized in the following lemma, the proof of which is given

in the appendix.
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Lemma 2.1 The Yk,6k selections in (2.21) satisfy the following.

^A A

kXkBki x < K < (2.22a)

k=o k kk k-l k- 1

l n Y / 2 e ) > 2  0(2.22b)
Upminf Ykr k >K 2> 0

k4o2-
A A A A

YkXkA Bk1 Xk < 3< , kE€ l, K3 > 11Bo11 (2.22c)

Remarks. 1. The distinction between the prediction a1gorithm

and the adaptive control algorithm has been necessitated due to the

fact that whereas Y = 1 is a possibility for the prediction algorithm,

the analysis technique of this paper does not permit such selection for

the adaptive control algorithm, unless additional assumptions like
A

persistency of excitation are made. Of course, the Yk selection

involving (2.21e') could be used for both prediction and control

applications.

2. 'For the prediction algorithm, if after a finite time
K A

k, ak satisfies ak <  K then Yk becomes a constant after such time.

Thus the algorithm behaves as standard least square algorithm under

persistency of excitation

3. Under minimum phase restriction on the plant for

adaptive control algorithm and stability restriction for the open

loop prediction algorithm, it will be shown in the subsequent section
A

that Yk is bounded from below by k - I 2  without requiring any

persistency of excitation condition

4. The -k selection could be simplified by eliminating

(2.21b, without changing the convergence analysis of the subsequent sections.
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3.1

3. CONVERGENCE ANALYSIS

The convergence results are presented as two major theorems,

now stated and proved.

Theorem 3.1: Consider the plant (2.1)-(2.3) and the weighted extended

least squares estimation schemes of Section 2 with the yk,6ky

sntisfying (2.21) • Then

with the plant constrained by the Passivity Condition of Sqctlon 2,

(i) lim sup tr{(6'l k B 6 < a.s.kk k k

AA

l -m6I -1 mO = a.s.

k-Kk

(i) :IIBk-lll-16kllek" -0k.jII 2 < oa.s. for all finite i
0

(ii) LYk II 2k/k - Vkl 2 < a.s.0

00

En addition, for the adaptive control algorithm, one also obtains

(iv i Tkl k 1 1 "kl Vk112  < a.s.

0

or 'k 1 Zk 11V~ < a.s.

0

where tk = Yk if kEl',Y and Tk = ykrk - I /2 + e rws

P(OO: Iesult (i). First define for >0 and K given in (2.17)
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kI

Vk - 1{B 6 } ll 2+II P II)] + 1( (3.1)

where Pk = x + 0kxk' qk ' Okxk" Observe that V > 0 by virtue

of (2.17), guaranteed by the Passivity Condition. Simple manipulations

now yield,

Vklk + k k- 1
EkVk Fk _] < Vk + [ -Y (1lqk 112 ) II 2 ) k-

(3.2)

where

k tr{Ok~kk - Ok iBkl1k-1 + 2Yk(Pk +Vk)qk k

-, --.1 ^- ,l
- tr{O0 (Bk - Bk-l 0k - Y2(Xkk-lXk)Zk/k)k/k-ykkxk qk k

The latter equality follows from a substitution for 0 kl from (2.11b).

Applying the inequality (2.8) and definition for k gives that

Ak - -?k where nk is defined below. Also, from the definition of

qk and (2.11a)

E [ 2 kIk F k -l ] =2Yk
E [ klkI ] = -Ok

k Yk(XkBk-lxk) (Yk +XkBk-lXk) - III Vk 1 tIk-l(

with

okYkxkBk lxkl zk/kII

Application of these results in (3.2) gives

E[VkIFkl-I] - Vk-i -YkE[I1 qk 112 + 11 Pk 112IFk-l] + Ok-nk (3.4)

or with Vk Vk + eYk(I k 112 + II Pk k 2  k

- 112  +  11pi 112)  (3.5)

E[V kI~k-lJ Vk-l - 'k-l(' 11 2 + k-1k-l + k 'k-l(35
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The martingale coi.vergence theorem {pages 33, [23],, now tells us
00

that for arbitrary V k 0, 0, k < V thdn almost surely

V converges and I Y k qk 112 < -1 Y YI P 112 < " Application
0 0

here is straight forward since the strict passivity condition ensures
A

that Vk - 0, and the Y selection to ensure (2.22a)and the noise

restriction (2.2) ensures that < =. Thus under the conditions
0

of the theorem

YkI/Zk/k-Vk 112 = YkIPk + q k 112 < 4 " Yk(I1qk [ 1+ [k 112) < a.s.
0 0 0

00
2^  ,, 2 (3.6)
xYk k-lXkI < a.s.

Also Vk converges almost surely.

The first part of result (i) of the theorem follows since the

additive terms comprising Vk are all positive and thus for each,

denoted (i) lm sup .(i) < . The second part of (i) followsk k k

frou the first part.

Result (ii). From (2.11)

k[k- [ -1 - k1 1 2 < 6kkX~~~[ Z~[ (3.7)
6k lIk.l-l k - 2k < 6 k -lxkII 2kkI

The result thus follows from second part of (3.6).

Result (iii). Part (a) is merely (3.6) which has thus been

established. Result (iii b) follows since the system (2.13)

rewritten as

Y i~~ [y2 (F+GO'~ -' Y ) -
k+l [k+l )k ]YkXk + (GYk+lYk )kqk

has a bounded-input, bounded-state property by virtue of its

asymptotic stability following from the strict positive real con-

dition on (2.13), as in (2.15), and the fact that Yk monoionically

decreases from (2.21e). A crucial intermediate step is

k ii (F tkiy k FIG' 1 k-i<k~ I
X Yk+(F+G') yi I II F+GO' K k < 0
0 0
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for some K and all k, otherwise the arguments are standard.

To obtain the result (ivY for adaptive control, premultiplying (2.11)

by xk and taking its norm yields,

k2

k Xk(Ok ak_)l2 <_ Y(xkB 2 2

Applying (2.22c), noting that - 1, for the adaptive control algorithm

and the application of second inequality of (3.6) results in

Tk~x,(k _A~ 61 A 2A^- A t~/I
kllxk (0k ek- 3 k k XkBklXk 1k

and thus Akl kok A -k <  a.s. (3.8)

Result (iv a) follows from (iii a) anu (3.8) since

1izk/k-1 - Vkll ' <_ 2 IIzk/k -k1 + 2 IIxk (ek -kl) ll

Result (iv b) simply designates that in adaptive control, the tracng

error z* is equalto zk/k T

VVV

Remark 1. In terms of the parameter and state estimation errors,

the prediction and the adaptive control algorithms are alike. However,

for the prediction algorithm it has not been possible to deduce the

convergence of a priori prediction error z k/k 1 from that of the a

posteriori prediction error z k/k.* This is due to the fact

AA A A
that zk/k I = (1 + YkXkBk-ixk zk/k and the Yk selection does not

ensure any a priori bound on Yk xkBkiXk * The presence of the factor

- C A
rk in Yk for the control algorithm just enables to obtain the result

that ik

lim sup 1II x 1 12 < .

(See also next theorem.)
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2. The passivity condition is automatically satisfied for

the case when R = x is known as for example for ARMAX models with
k k

white noise. Simulations and the theory of [4,5] suggest that other-

wise it is close to being a necessary condition. The condition was

first exploited in [1-4] and is not discussed further here.

3. The result (i) is a generalization of [1, 2] for the

closed loop estimation using weighted least squares algorithm. The

results (ii), (iii) are novel and have no correspondance to earlier
A

results for the case Yk 1.

4. As noted in section 2, the state and parameter esti-

mation error equations can be re-organized as a feedforward system

with states xk back to back with a feedback system with states k as

" k+l (F+GO')xk + Gq ,k = +'x +q

k = k-i - YkBk-l(Pk + + k)'  k = OkXk

The result k 0 in the proof of result (i) above leads to the

conslusion, via a passivity theorem also in [1,2], that the linear

time varying feedback system with inputs (pk+vk) and output (qk)

is passive. Since 6k is monotonically decreasing, the same system

but with output = qis also passive.

5. An additional cosntraint namely the Minimum Phase/

Stability condition of Section 2, can be introduced t 6uarantee

bounded signals and lower bounds on yk as follows.
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Theorem 3.2: Under the conditions of Theorem 3-i and with the

Minimum Phase/Stability conditions of Section 2, holding, then the

estimation schemes of Secdion 2 yield the bounds

k 2
krn sup 1 Xili 2 < a.s. (3.9a)

k0

A A

rn inf Yk (/2+) > 0 lim YkXBkXk 0 a.s. (3.9b)
k. kk4 k- l'k

0zk-(/2+e) 2 < ) a.s. (3.9c)
Ik

0
a.s. (convergence rate k (3.9c) I

k -  0'

k- 2  + l klk -< kl i k- ( 1/ 2+ c )  kIlik/ift"kX i-1 il
0 k-0 0

a.s. (3.9d)

In addition, for the adaptive control algorithm

000

Sk- ( 1 / 2 + 0) lik-V 11 < , lir k- ( I / 2 + 6) k li*_ \- 1 = 0 a.s.(3.9e)

0 k-).- 0

1ik o T k
lim sup a x< lim 0 <  a.s.

k (3.9f)

k 0

POOn"+ Considering first the prediction algorithm, exploiting the
A

lower bound on vYk  of (2.22b), and the Kronecher lemma [23], then result

(iii) of Theorem 3.1 yields

li [mx=rl 120 11x 1 0 a.s. (3.10)
k-) i=O

Now since IlxIIl< 211 xll + 211 ii the application of (2.18) results

in

IIl xil k 1_ x 0I ill + K (3.11)
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for some K, 0 < K < Simple manipulations then imply (3.9a). In

brief, in view of (3.11)

k 2 _(1/2+ ) k 2 k  2 1/2+)
[max k, 1 II xii 11 xll2 > x +111

0 0 i=O

i=O

This inequality implies that llm sup 0 1I ill 2 <  a.s.

for otherwise taking limits for a subsequence there is the contradiction

that 0 > . This bound in (3.11) establishes (3.9a) for the prediction

algorithm. For the adaptive control algorithm the lower bound on Tk

namely Ikrk > K2 , for some 2 < - from (2.22h) the Kionecher ]emma

[23], and result (iv) of Theorem 3.1 yield

lim [max k, rk]-1 112  0 a.s.
1

For the adaptive control algorithm, it will be established in the sequal

that,

1 k, A2 K k2
Ik 11 xi < i i ll z i/i-l - Vi 11 + K (3.12)

0 1=0

These two inequalities establish (3.9a) for the adaptive control algo-

rithm by repeating the above argument verbatim. This along with (2.22b)

of Lemma 2.1 implies the first part of (3.9b). That (3.9a) implies

the second part of (3.9b) follows from the lemma A2 of [17] in view of

the boundedness of Yk' Now the first part of (2.101)) implies that

- Vk 12 < 2 II - VkII 2 + 2(ykXkBk .xk) II k/k
'Ikkl V 1 / kk k-lk kk1
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The application~of the result (iii) of Theorem 3.1, second part of
CO

- ,, (3.9b) and the second part of (3.6) imply that I Yk i1k/i-1 - Vk 112 < 0
kll0

a.s. The -result (3.9d) then follows by applying the first part of (3.9b)

and the Kronacker lemma. Result (3.9e) holds as a consequence of (3.9d)

since for the adaptive control algorithm, the tracking error z equalsVk

the prediction error Zk/kl' Also, Ixk 112 < 2 1lxk 1 2 + 2 I[ k 112,

and the first part of (3.9f) follows from (3.9a) and (3.9c). The second

part of (3.9f) is a consequence of the minimum phase condition (2.20)

while the rest follows from (2.1) and (2.2b).

It remains to show that (3.12) follows from the theorem assumptions.

A consequence of the minimum phase condition (2.20) and the bounds

(7.2b), (2.19) in the following inequality

ik k k 2 k2
2 <~iI 1J I~vI2 + 3L llI~zlI2 + 31 Hlvll

k 0 0

gives for some K~

k k < Kii V 2+ K (3.13)
0 0 0

Also, [I 11 2 is bounded in terms or 1i+q, 112 = k, + i 112

= II 2 - i II=  as in the passivity condfrion statement, and

I 11 /i-v i IV - 2 11 12 +211 v 112 5 2 1 1  1- +211 112

411 i/i_l-Vi 11 +611 vi 112, giving that 1 x[ is hnunded in terms

of II i/i-l-_i I11 and IIVi 11 . Now since iI II < 211 x. I + 211 i 112,

application of (3.13) and this bound gives (3.1).

VVV
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Remarks 1. The results (3.9cd) of Theorem 3.2 and their

anLtcedent results (iii, iv) of Theorem 3.1 are stronger than the

previous results (6, 15] which do not give explicit convergence of

z to V i , or the implicit convergence rates. Here, in

addition to the convergence of zi/i_1  to Vi , an implicit lower

1/2
bound of i on the convergence rate of the prediction/tracking

error and the state estimation error is established independent of

any persistency condition

2. It is easily seen that if the matrix Bk  or
k ~.A k
Sxlx) decreases at a rate i or faster then Yk will remain

nearly constant for the prediction algorithm and nearly k for the

adaptive control algorithm. This is in view of the result that
l kA A

lim sup -x x < . However as the bound is not uniform, it is not

possible to conclude that Yk will exactly be a constant under such

conditions.

3. It remains an open question as to whether or not

can fail to converge to zero without a weighting coefficient

selection and in the absence of persistency of excitation.

4. The techniques of this paper as well as those of [6, 15]

prove the various convergence in the Cesaro sense. In a subsequent
A

paper (28], the uniform boundedness of xk and the uniform convergence

of prediction error is established for a related algorithm using the

projection methods of (29, 30]
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4. N-STEP AHEAD ADAPTIVE PREDICTION/CONTROL SCHEMES

If there is a delay of N units between the application of a

control signal to a plant and any response to that signal, then in

controlling that plant, it makes sense to work with an N-step ahead

prediction of the output of the plant. In minimum variance N-step-ahead

control, the measurements {zk} are predicted N steps ahead as
Ak

Zk+N/k(Uk) , being expressed as a known function of the ccntrol signal

at time uk. The control u can then be chosen so that this prediction
k' k

is the desired N-step ahead output trajectory zk+N . That is, uk  is

chosen to satisfy

Zk+N ' zk+N/k(uk) (4.1)

Thus for N-step-ahead prediction/control, consider a state space

model encorporating an N-delay as

Xk+N ' Fxk+Nl + GI'Xk + Gznk + f(uk, zk) (4.2a)

zk = + nk, nk = wk + QOwk_1 + "' QN_2wk+lN (4.2b)

with wk satisfyirg (2.2).

Consider the scalar input/output model Az Bu + Cw
k+N k k+N

-1
with A, B, C polynomial operators in the delay operator q with

degrees n, m, p, where A, C are monic. With the long divisions

C = AF + q-N , I = CT + q-N defining F, F monic and of degree (Di-i)

and G, G monic with degrees (n-l),(p-l), and definition

k= k' Zk = Yk + nk' then simple manipulations yield

CYk+N = FBuk + Gzk' Yk+N = GYk + TFBUk + FGzk

Defining, for the scalar variable case
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k+ [Zk Zk-1 "k Uk-i Yk Yk-i ]
n+N-1 )fm+2N--" p -

then a re-organization as in (4.2) is straightforward. Using the theory

of [18], the multivariable case can be covered likewise.

Also, transfer function models can be organized as in (4.2).

With the above model (4.2), an adaptive estimator is

Xk+N - Fxk+N_1 + A16kxk+G + fk(Uk, Zk) (4.3)

where 0k is calculated as in (2.7) - (2.9) in terms of xk of (4.3).

A prediction zk+N/k kX+N, and control uk is selected to satisfy
A

zk+N = 'kxk+N(uk).

With the definitions q (^k), k (-Ok~k+O'xk) as earlier,

then (4.2), (4.3) yield

k+N "F+N-l + G(P + q,) I k "O'x +-qk (4.4)

and the passivity condition of interest is as follows.

Passivity Convergence Condition. The system with state equation

(4.4) is output and input strictly passive, or equivalently in the

time invariant case

{[I-,z- (N-1)(ZI -F)-IGJl - 1) is strictly positive real

For the input/output model this condition is that, see also (17].

{[I-z-(N-l) (z)]-I - is strictly positive real.

Convergence Analysis. To generalize the theory of this paper

to the N-step-ahead prediction scheme above, a crucial step is to

view Xk' ek, as decomposed with N fictitious values as



4.3

~N

'-(1) " (N) ' (1) .... (k with the properties ic - i
N k k k k

k for all k, where
1--I

S (1) + A ^A ) (4.5a)
ak k-i Yk'kxk k/k-1

+ ()5 + b)
ak/k-i k k-i k i-2Wk+l-i'

and

-Mi -(i) ()
+N = k+N +k 

(4.6)

Exploiting the fact that -Fk: F for
fatthtXk) Yk' 'k' xk) 6k Fk-N k-i

i - 1, 2 ... N and thus 0kic F then V k

has the property E[V( Fk-i] V k-M{ E[wk+liIFki] - 0. Working

with E[V(1)IFki], rather than E[Vi)I Fk_l], then the earlier

analysis approach yields that under the passivity condition above,

for i - 1, 2, ... N.

AlsoVM, <kl , 0k - ii1 <a a.s. and consequentlysu Xk k k kkN

0

StjZk/k-.N - Qi 2 Wk+l-~ i < as(48
0

From (4.7) and (4.8), and application of the triangle inequality, then

rll sup tr{0kB kklk<co, kll Zk/k-N - nk 112 < 0 a.s. (4.9)

00

and the global convergence results for one-step-ahead-prediction 
control

of the previous section apply for the N-step-ahead prediction/control

case with vk replaced by nk' and zklk replaced by zkjk-N" 'k in (4.8)

and (4.9) can be replaced by k(I/2+ £) as in the proof of Theorem 3.2.
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Remarks I. The predictors above are simpler than those in [17] involving

a bank of N interlaced parameter estimators. Here, the decomposition

of 0 into O( ) ... 0(N ) etc. is purely a construct in the converg-

ence theory with no consequences for implementation. Also, the results

are mildly simpler than in [19] upon which this section is based.

2. The above results are also applicable to the problem of

establishing convergence in the presence of colored noise but where the

state estimates are uncorrelated with the noise. A second important

application is for output-error schemes which use a parallel model to

achieve a state estimate uncorrelated with the noise. A subsequent

paper studies this case in detail [27].
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5. CONCLUSIONS

The paper has presented a weighted least squares approach in

parameter estimation, N-step-ahead prediction and control. The

weightings are selected according to a stability measure and guided

by a global convergence theory. A feature of the approach is that we

achieve open-loop adaptive prediction and identification results, and

with the same theory, closed-loop adaptive control results. Thus, in

our adaptive control schemes, under persistently exciting conditions,

there is consistent parameters estimation, and asymptotically optimal

state estimation achieved while tracking. Also, the results have

application to the adaptive control of general linear nonminimum

phase plants [25] and output error recursions in colored noise [27].

I
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Appendix

Proof: That (2.13) specializes as (C (z)- ] for the ARMAX

model (2.4). The system required to be strictly passive is one

where qk ) and Pk (kik +  k Simple manipulations

yield (pkqk) = 8kXk + 6'x = Zk/k - k and for the ARMAX model
r

(2.4), (Pk- qk) O 'xkk = i (vil-zi-i/iil) is seen to be the
P=1

output of a system C(z) driven by (p k qk). Standard manipu-

lations then yield that the system with input qk and output Pk

is [- (z)- ].

Proof: That (2.17) follows from (2.14). In simplified no-

tation, with [ Pkq > -K for some K -> 0 and all m, and Yk > 0

0
m m

(Y- B 0) monotonically decreasing, then I Ykp -  m I -p q

m+l k-l mn+l

(yk-k-l) -'k Y K + (YkYk l)K = -y 0 K. Here the
k 0 i=O - Ym k=0

first equality is from summation by parts, and the inequality

follows from the assumptions. Thus X Y - -YOK. VVVi 0

Proof of Lemma 2.1. Noting that Yk < Ykrk

Y B ,x < E k-( < 0 (Al)
keyk k k k-i k -( 0

A A A A COk-l)

,x,.B. lx, < I k< (A2)

2 ^-
kYk A2 B x kk I 2

Xk 'k k k k 0 r (l+C) '091 < (A3)
3e k

where the last inequality follows from the lemma Al. Thus (2 .22a) is

established with K being the maximum of the three sums on the right hand

side of the above inequalities. To prove (2.22b) note that Y will have
k

smaller value when kCYY compared to its value inS4 for large value
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of k and thus

lim inf Yk >  rk-(l/2+E) [min C, K- 12]

resulting in

lm inf Ykrk(l/2+e) >KK m.in [C, K-1/2]>0

Now for k$F-l, 2

max (k kl/2 El/2] Yk

YkXkBklXk -< 7[k

< K3

where K can be chosen such that K 3 > JIB0 i , thus established (2.22c)

and completing the proof of lemma 2.1.

VV

Lemma Al For any arbitrary E > 0, with rk defined as in (2.21d)

one obtains
0A A
X xk r (14 < 0 (A4)

0 k k

P4006: The proof of the lemma is given in [28) and is presented

;& 1here for easy reference. Select an integer m such that V > H_ and
2

denote N 2m , then the following algebraic manipulations yield the

desired result
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og-

;i rk- -t-) < I (1+11N)
k=O -k - k=O rk

00 (rk-rkl)

k=O rk(1+1/N)

m (1-1/N) 1/N_ /N
OD 2 r (rk rk-1

-k 1+1/N
k=O rk

k k rk-i

' .< 2m r-1/N <
-2 r 1

vvv

I.

V,
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